AD-A127 576 IMPLEMENTING SPECIFICATION FREEDOMS(U) UNIVERSITY OF
SOUTHERN CALIFORNIA MARINA DEL REY INFORMATION SCIENCES
INST M FEATHER ET AL. APR 83 ISI/RR-83-100

UNCLASSIFIED MDA903-81-C-0335 F/G 9/2

E ND
e

583
pTic

.A_.
1

g
[

Is
i ddd o

orrrr

3
re

EEEL
o

W§Mz

i
li2s s mtge

MICROCOPY RESOLUTION TEST CHART
NATICNAL RUREAL 06 STANDARDS 196 &

DTC FiLe copy

ISI/RR-83-100

April 1983

AT ii
‘/;\»4(

! |
Uni A 3
fuverstl) | é{.w 3 f
ofSouthern R \'t‘ ,‘; !
California M !

Martin Feather
Philip London

Implementing
Specification Freedoms

DIIC

~LECTE
MAY3 1983 !

7
B

DISTRIBUTION STATEMENT A ;
Approved for public releass; !

Distrsibution Unlimited i

83 05 03 018 |

23/802-1511

INFORMATION
SCIENCEﬂ
INSTITUTE 4676 Admiralty Way/Marina del Rev/California 90291-6695

Unclassified

SECURITY CLASSIFICATION OF TwiS PAGE ‘When Date Entered;

READ INSTRUCTIONS

! REPORT NUMBER 12 GOVT ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER
ISI/RR-83-100 D 4747 54

4 TITLE ‘and Subtitle) $ TvyPgE OF REPORT 6 PERIOD COVERED

Research Report

implementing Specification Freedoms T PERTORVI G ORT REFSRT WouBER

7 AUT~OR/’3, 8 CONTRACY OR GRANT NUMBER(s)
Martin Feather and Philip London MDAS03 81 C 0335

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 :SEER‘M‘! EA.EMEN:‘ PRDJEnC;, T ASK
USC/Information Sciences Institute ORR UNIT NuMBE
4676 Admiralty Way
Marina del Rey. CA 90291

t1 CONTROLLING OFFICE NAME AND ADDﬂ.ESS 12. REPQORT DATE
Defense Advanced Research Projects Agency April 1883
1400 Wilson Bivd. 13 NUMBER OF PAGES
Arlington. VA 22209 S4

14 MONITORING AGENCY NAME & ADDRESS/{! different from Controlling Oftice) 1S SECURITY CLASS. (of thie report)

Unclassified
.......... 1Ss. DECLASSIFICATION DOWNGRADING
SCHEDULE
16 ODISTRIBUTION STATEMENT /of this Report)
This document is approved for public release and sale; distribution is unlimitec.
17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, if ditterent from Report)
18. SUPPLEMENTARY NOTES
Current address of Philip London: Teknowledge
525 University Avenue
Palo Alto. CA 84301

19. XEY WORDS (Continue on reverse side {f necessary and identify by dlock number)
automated software development, formal specification, Gist. program modification, program
transformation. very high-level languages

20 ABSTRACT ‘Confinue on revaree side {{ neceesary and identify by dlock number)

(OVER)
DD , 53", 1473 eoimion oF 1 nov 6s s opsoLETE Unclassified

S/N 0102-014- 6601

[]
‘i
F |
3
v
t
¥

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bnrered)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (continued)

The process of converting formal specifications into valid implementations is central in the
development of reliable software. As forma! specification languages are enriched with constructs to
enhance their expressive capabilities and as they increasingly afford specificational freedoms by
requiring only a description of intended behavior rather than a prescription of particular algorithms,
the gap between specification and implementation widens so that converting specifications into
implementations becomes even more difficult. A major problem lies in the mapping of high-level
specification constructs into an implementation that eftects the desired behavior. in this report. we
consider the issues invoived in eliminating occurrences of high-level specification-oriented
constructs during this process. We discuss mapping issues in the context of our development
methodology, in which implementations are derived via the application of equivalence-preserving
transformations to a specification language whose high-level expressive capabilities are modeled
after natural language. After the general discussion. we demonstrate the techniques on a real system
whose specification is written in this language.\

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ISI/RR-83-100
April 1983

University
of Southern
California

Martin Feather
Philip London

Implementing
Specification Freedoms

INFORMATION
SCIENCESE 2BHISH
INSTITUTE 4676 Admiralty Way/Marina del Rey/California 902916695

This research is supported by the Defense Advanced Research Projects Agency under Contract No. MDAS03 81 C 0335. Views and
conclusions contained in this report are the authors’ and shouid not be interpreted as representing the official opinion or policy of DARPA,
the U.S. Government, or any person or agency connected with them.

il H

B [3 .« Yo ¥ 1 1+ o TS 1
2.Package Router Problem. 4
2.10utline of Problem 4
2.2 Gist Used to Specity Problem i 5
B MaPDINGS . ot e 6
3.1 Historical Reference 6
3.2 Constraints and NONGeterminiSM. i et e 8
33Derived Relations. 13
BA DeMONS . . 76
3.5 Total Information i 18 i
4. DeVelOPMeNt . . . 20
4.1 The Development e 21
B 2 DS CUSSION. . . o oottt it 31
B Related WOrK. . . 33
5.1 Transformational Methodology i 33
B2 Specification. e 34
B8 Group Efforts @t 1S1 35
6. CONCIUSIONS. . . ot 36
|. Gist Specification of Package Router i i 38
RelerenCes 45

e e e e e ————————

Acces~ion For
CRTCS T

DyIeoTon !
LRI 3
o Just e e

Ry ________1

NDistritutinn[ﬂ_"._“~‘~*
Avaslatility Codes]
Avasl and/or
Dist | Special

Al

ACKNOWLEDGMENTS

We wish to thank the other members of the IS Transformational implementation group: Bob Balzer.
Wellington Chiu, Don Cohen, Lee Erman, Steve Fickas, Neil Goldman, Bill Swartout. and Dave Wile.
Collectively they have defined the context within which this work lies, and individually they have
improved this report through frequent discussions about the research and helpful comments on the
drafts. Thanks also to Sheila Coyazo for editing the final draft. Portions of this report appeared in a
paper of the same name published in Science of Computer Programming {21].

~ e

1. INTRODUCTION

As formal specification technology continues to develop, the constructs available in specification
languages will differ increasingly from those available in the various implementation languages. A
problem then arises in the mapping between these disparate fanguage levels. Implementation
languages simply do not possess the ability to directly express concepts found in specifications. This
is as it shouid be. because the languages are designed for different purposes: implementation
languages are for describing efficient algorithms, and specification languages are for describing
behaviors.

One goal in the design of formal specification languages is to ease the task of writing
specifications. One approach is to use a specification language that reduces the burden in two ways.
First, by enhancing expressiveness, this type of language allows the specifier to state his desires
more easily. Second, by requiring only a description of intended behavior rather than the detailed
specification of a particular algorithm, this language affords a specifier the freedom to specity what 1s
desired rather than how to achieve it.

This approach, however, aggravates the problem of producing a correct implementation from the
design specification. In this paper, we investigate a solution to this problem by presenting a number
of implementation options for each of several high-level specification constructs. We then
demonstrate that the mappings of these high-ievel specification constructs into implementations are
derivable by sequential application of relatively straightiorward correctness-preserving1

transformations. The collection of high-level specification mappings can be viewed as the major
conceptual steps in a "transformational implementation.”

The work presented here should be viewed as being but part of a larger effort (being conducted by
the Transformational Impiementation (T1) group at ISl) investigating reliable software development by
considering methods for automating aspects of the software development process. The methodotogy
we have adopted for developing reliable software comprises the following activities:

1. system specification in a formal fanguage designed for specification;

2. elimination of high-level specification constructs by mechanical application of
correctness-preserving transformations;

3. selection and development of aigorithms and abstract data types to effect behavior
described in the specification (also by mechanical application of correctness-preserving
transformations); and

4. translation into the target implementation language.

The implementor maps the specification into an implementation through the selection and
application of appropriate transformations (from a pre-existing catalog). The programmer in this
scenario has control over the implementation process, making many of the same decisions he would
ordinarily make. QOur goal is to construct a system which will relieve some of the implementor’'s
burden by performing the perfunctory tasks of bookkeeping and program source text maintenance.
Specifically, the following portions of this software development system will be automated:

1Sim:e in our view a specification denotes a set of behaviors. our notion of a “correct” transtormation is one whose
application results in a specification denoting a subset of those behaviors (a nonempty subset, provided that the original
specification denoted a nonempty set of behaviors).

2 IMPLEMENTING SPECIFICATION FREEDOMS

1. tools to assist the implementor in deciding on the appropriateness and applicability of a
given transformation,

2. a mechanism for applying a chosen transformation to the developing program,

3. support for the development process (e.g., automatic production of documentation and
"replay” facilities which allow a development to be repeated so as to reimplement a
modified specification).

4. the catalog of correctness-preserving source-to-source transformations. which embodies
the knowledge of aiternative implementations of particular specificational constructs. and

5.a mechanism for translating a fully developed program into a target implem~ertation
language.

The specification language itself is critical within this software development framework. Two basic
characteristics are required of the specification language. The first of these is that the language
provide the flexibility and ease of expression required for describing the full range of acceptable
behaviors of the system under design. See [2] for a description of the requirements for specitication
languages that will exhibit these characteristics. The second requirement of a specification language
for our software development methodology is that it be wide-spectrum [7]. This means. in essence.
that the same language can serve both as a specification language (for describing the full range of
acceptable behaviors) and as an implementation language (for describing an efficient program whose
behavior is true to the specification). In reality, the specification language need be wide-spectrum
only up to a point; after selection of algorithms and abstract data types. the "implementation” can
automatically be translated into a suitable implementation language.

Our group has developed such a language. called Gist [25], which permits expressibility by
providing many of the constructs found in natural language specifications of processes. These
expressive capabilities include historical reference (the ability to refer to past process states).
constraints (restrictions on acceptable system behavior in the form of global deciarations), a
relational and associative data model which captures the logical structure without imposing an
access regime, inference (which allows for global declarations describing relationships among data).
and demons (asynchronous process responding to defined stimuli). among others. Thus. the effort in
Gist has been to provide the specificational expressiveness of natural language while imposing formal
syntax and semantics.?

This paper focuses on the transformations used to eliminate these high-level specification
constructs. Such elimination is obviously necessary. because no target implementation language is
expected to provide such facilities. More important, to the extent that the specification fanguage is
doing its job of describing intended behavior (what) without prescribing a particular algorithm (how),
these constructs represent the freedoms offered by the specification language. How such freedoms
are implemented determines in large part the efficiency of the resulting algorithm. Furthermore, as
such constructs are just beginning to be incorporated into specification languages, consideration of
alternative implementations of these constructs has received little attention. Absence of these
constructs has forced systems analysts and designers to choose (normally unconsciously) one
implementation as a precondition to expressing a specification.

2Note that Gist syntax is ALGOL -like and not English.like!

INTRODUCTION 3

The development of these high-level transformations, which we call mappings, presents a rich set of
issues dealing with the translation of specifications into implementations. As it is often difficult to
separate the activities of mapping high-level constructs and selecting and developing algorithms and
data types, the discussion of mapping transformations will also consider these issues.

2. PACKAGE ROUTER PROBLEM

2.1 OUTLINE OF PROBLEM

To illustrate our approach, we choose as an example a routing system for distributing packages
into destination bins. This problem was constructed by representatives of the process control
industry to be typical of their real-world applications. Hommel's study of various programming
methodologies used this probiem as the comparative example {26].

Figure 2-1 illustrates the routing network. At the top, a source station feeds packages one at a time

into the network, which is a binary tree consisting of switches connected by pipes. The terminal
nodes of the binary tree are the destination bins.

7L— source

b pipe

switch

<——— bin

Figure 2-1: Package router

When a package arrives at the source station, its intended destination (one of the bins) is
determined. The package is then released into the pipe leading from the source station. For a
package to reach its designated destination bin, the switches in the network must be set to direct the
package through the network and into the correct bin.

Packages move through the network by gravity (working against friction), and so steady movement
of packages cannot be guaranteed; they may "bunch up” within the network and thus make it
impossible to set a switch properly between the passage of two such bunched packages (a switch
cannot be set when there is a package or packages in the switch for fear of damaging such
packages). If a new package's destination differs from that of the immediately preceding package, its

PACKAGE ROUTER PROBLEM 5

release from the source station is delayed a (precalculated) fixed length of time (tc reduce the chance
of bunching). In spite of such precautions, packages may still bunch up and become misrouted.
ending up in the wrong bin; the package router is tc signal such an event.

Only a limited amount of information is available to the package router to effect its desired
behavior. At the time of arrival at the source station, but not thereafter, the d.Jtination of a package
may be determined. The only means of determining the locations of packages within the network is a
group of sensors (placed on the entries and exits of switches and on the entries of bins); these
sensors detect the passage of packages but are unable to determine their identity. (The sensors are
able to recognize the passage of individual packages. regardiess of bunching).

2.2 GIST USED TO SPECIFY PROBLEM

s

The specification task is to denote how the portion to be implemented {switches, source station)
behaves. To accomplish this, the specification models not only this portion. but also the surrounding
environment, to form a closed system. The environment is modeled in only as much detail as is
necessary to express the properties needed by the system to be implemented (e.g., the rate of
movement of packages through the router is unpredictable; however, packages never start moving
backwards through the network, and packages never overtake one another). Within this closed
system. the portions to be implemented are the controlling mechanism for the switches within the
network and the source station releasing successive packages into the network.

In specitying the system. we aim to make a clear and correct staterment of the behavior the switches
and source station must exhibit in their interaction with each other and the environment. However,
the specification strives to describe the behavior directly, without resorting to an algorithm that
effects that behavior: deriving such an aigorithm is rightly part of the separate task of implementing
the specification. Theretore, the emphasis in specification is on what rather than how. This emphasis
is important for making a clear distinction between specification and implementation; by describing
what, we do not restrict the implementation freedoms available. Section 3 describes some of Gist's
constructs that permit an easy statement of "what." The entire package router specification is
presented in Appendix |.

in a further effort to simplify the specification of intended behavior, Gist specifications assume
p¢ .ctknowledge. That is, any information used to describe the behavior of a system is available to
each component part, to describe its interactions with other parts. This assumption is often not
satistied in the actua! system. In the package router example, the specification relies upon knowing
the location and destination of each package. However, in the actual system the destination of a
package is only accessible while it is at the source, and its location is only deducible from sensor data
indicating the passage of packages through the network. In an implementation the unavailabie
information must be deduced from other, available information. This problem would complicate the
description of the system behavior by substituting a how for a what description. For this reason, we
have therefore separated these two issues. The specification is based on the perfect knowledge
assumption and the actual implementation is described separately, as are all other implementation
issues.

3. MAPPINGS

In this section we will consider in turn several high-ievel Gist constructs and show the following for
each:

1. why it is a useful specification construct. illustrated by presenting a use of it in the
package router probiem:.

2. what implementation alternatives exist, achieved hy mapping the construct awa,. and
what the implications are of those alternatives.

In Section 4 we will demonstrate how these mappings can be derived.

3.1 HISTORICAL REFERENCE

Historical reference refers to the ability to extract information from any preceding state in the
computation history. The ability to do this frees the specification from determining in advance (and
remembering) all current information that might be required at some time in the future. Required
information is merely retrieved at the point of consumption without concern for when it is available

3.1.1 Example From Package Router

The source station is to control the release of packages into the network as follows: If a newly
arrived package's destination differs from that of the immediately preceding package. delay release of
the new arrival. otherwise release it at once. The "historical reference” here is to the cestination of
the immediately preceding package. Using Gist. this portion of the specification i1s expressed as
follows:

demon RELEASE_PACKAGE_INTO_NETWCRK|[package.new]
trigger package.new : At = the source
response
beqin
it package.new : Destination #
(apackage.previous ||
package.previous immediately < package.new
wrt PACKAGES_EVER_AT_SOURCE("})): Destination
then WAIT[]:

update : At of package.new g (the source) : Source_Outlet
end .

relation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE)
definition packages = (a package) ordered wrt package : At = (the source) ;

e *‘*—f '““""",.ma T v =2 ‘ :
“’. ‘ - : i

i

MAPPINGS 7

In English,

Determination of when 1o release a pachage into the network commences when a new
package becomes focated af the source station.
!t the new packace's destnation differs from that of the previous package (that is. the
rackage immediately prececing the new package in the sequence of packages 10 nave
peen located at the source (defined below)), tnen wait.

The sequence uf cacrages ever located at the source is defined b, nondeterministicaiy
referr.ng 10 packages. and crdering them by the order (1 wh'ch they were (ocated at the
source--gerivea relation” PACKAGES_EVER_AT_SOURCE.

Historica! reference proves to be of significant utility here because it frees the specifier of concerns
about how to save informatior that 15 required but not readily available \n the current computation
state.

3.1.2 Mapping Away Historical References
Opticns for mapping historical references away are as foliows.

* Introducing and maintaining auxiliary data structures to hoid information whicr might be
referenced. and modifying the historical references to extract the information from these
introducec structures. The requirement for econom, of storages in an implementation
encourages the implementor to seek a compact representation fcr the information that
need be preserved and o ciscard information once it 1s no tonger useful

* Resolving the historical reference by derivation in terms of intormation avadlable in the
current state (without having to retain extra nformation frcm past states)

We suspect that the latter is rarely an available option. When 1t is. the tw¢ alternatives above present
the classical space/time tradeoffs: we must still compare the cost of the derivation with the cost of
storage and maintenance of redundant information to permit simple access. In the case of our
example, the specification indicates no way to derive the identity of the previous package passing
through the source station. Thus the first option, that of introducing auxiliary data structures. must be
used in this case.

Two factors bear directly on the range of choice of how much. and what. information needs to be
retained in an implementation of historical reference. These are the nature of the retrievals of the
information and how it is used. Both these factors are evident in our chosen example.

First. through examination of the entire specification we see that the only occasion in which this
particular historical reference is made is when a new package has entered the source station.
Further, we refer only to the package immediately preceding the very latest package--earlier ones are
no longer of any interest. Hence an implementation need remember only the most recent package to
have passed through the source station rather than all of them.

Second, we see that the only information we require from the historically referenced prev aus
package is its destination (in order 10 compare it with the destination ot the new package). Since

k]
“Another Gist corstruct. see Section 3.3

- . -, '—, > MM‘LW"‘ - v . ':I o

. cwees mw

8 IMPLEMENTING SPECIFICATION FREEDOMS

destinations are static attributes of packages (a property easily prcvable of the specification), we
could choose to remember only the preceding package's destination as opposed to its identity. In
general we must compare the frequency of storing the information with the frequency of accessing it
to determine whether it is better to perform the calculation upon storage or upon retrieval. In our
simple example we can see that there will be more retrievals than stores (because it is necessary to
store the destination only when it changes), so we choose to retain the destination rather than the
identity. Thus our historical reference is mapped into the following:‘

i

demon RELEASE_PACKAGE_INTO_NETWORK[package.new]
trigqer package.new : At = the source
response
begin
it package.new : Destination # PREVIOUS _PACKAGE_DESTINATION(")
then WAIT(] .

update : At of package.new tg source : Source_Outlet,;

ypdate ppdest in PREVIOUS_PACKAGE_DESTINATION(S$)
to package.new : Destination

end:

relation PREVIOUS_PACKAGE_DESTINATION(ppdest | BIN) ;

3.2 CONSTRAINTS AND NONDETERMINISM

Constraints within Gist provide a means of stating integrity conditions that must always remain
satisfied. Within Gist, constraints are more than merely redundant checks that the specification
always generates valid behaviors: constraints serve to ru/e out those behaviors that would be invalid.
In conjunction with the use of nondeterminism, they serve as an extremely powerful specification
mechanism, permitting us to describe an activity in a nondeterministic fashion; those behaviors of the
activity leading to states that violate the constraint are "pruned away.” We are thus able to express
our intents more directly (in the form of constraints) rather than encoding all the processes of the
specification so as to interact in only those ways that prevent arriving at an undesirable state.

3.2.1 Example From Package Router

always prohibited MORE_THAN_ONE_SOURCE
exists source. 1, source.2,

‘Secﬁon 4 gives the actual development steps for reaching this state.

FM__T‘_‘

MAPPINGS 9

This constraint prohibits the existence of more than one source by defining a predicate that must
never be true.S

in the package router, constraints such as MORE_THAN_ONE_SOURCE define the nature of the
waorld in which the specified system will exist. The constraint does not directly constrain the part of
the specification to be implemented. Constraints that do affect the behaviors of the portion to be
implemented receive the most attention in the development of an implementation.

3.2.2 Another Example From Package Router

demon SET_SWITCH{switch]
trigger Random()
response
begin
reguire SWITCH_IS_EMPTY (switch).
update : Switch_Setting of switch tg switch : Switch_Outlet

end;

always prohibited DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE

exists package. switch ||

(PACKAGE_IN_CORRECT_SWITCH_WRONGLY_SET(package)
and
((SWITCH_IS_EMPTY (switch) and

package = first{PACKAGES_TO_BE_ROUTED_BY_SWITCH(.switch)})
) asof true)
)i

The SET_SWITCH demon is @ nondeterministic expression of behaviors. It states that at random
times the Switch_Setting of some nondeterministically selected switch should be set to a
nondeterministically selected Switch_Qutlet of that switch. Picture a package router mechanism
with switches flapping at random.

The system behavior we desire to specify is to route packages correctly whenever possible. given
the fimitation of not being able to change a switch's setting unless that switch is empty. The
constraints that state this desired behavior are the require statement within the body of the
SET_SWITCH demon and the DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE constraint. The
former rules out those behaviors that involve setting a switch when it is not empty.6 The latter defines
a predicate that recognizes, after the fact, that a switch has not been correctly set. This recognition
occurs when

5variabie names formed by appending distinct suffixes 1o a type name and “* (e.g., source. 7 source.2) have the special

meaning of denoting distinct objects.

6Sim:e this is the unique place in the specification where the setting of switches is modeled, we have chosen 1o use a
require statement rather than a global constraint (a stylistic choice).

10 IMPLEMENTING SPECIFICATION FREEDOMS

* g package is in a correct switch (that is, a switch on route to the package's destination)
but the switch is set the wrong way, and

* at some time in the past there was a chance to set the swilch for that package: that is, at
some time

- the switch was empty, and

- the package was the first of those packages due to be routed by the swilch (reiation
PACKAGES_TO_BE_ROUTED_BY_SWITCH).

By putting this predicate into an always prohibited. behaviors which lead to such states are ruled
out. Now picture a package router mechanism with switches fiapping in just the right ways to get only
desirable behaviors.

Constraints and historical reference have been used here to characterize and rule out those
behaviors considered undesirable. We judge this to be a superior specification to one which uses a
complicated encoding of the trigger of the switch setting demon to achieve the desired (and only the
desired) behaviors.

3.2.3 Mapping Away Constraints and Nondeterminism

To fully appreciate the mplementation freedoms afforded by the specification constructs of
constraint and nondeterminism. it is necessary to understand the distinction between
nondeterminism in the specification and nondeterminmism in the implementation. It is obvious that in
our example. the SET_SWITCH demon is a nondeterministic expression of behaviors. Its associated
constraints serve to limit some aspects of this nondeterminism while completely eliminating others.
For example. the DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE constraint demands that a switch
be set correctly for the package next due 1o arrive when that package finally arrives. In this respect.
the constraint prescribes fully deterministic behavior.

On the other hand. the constraint leaves imprecise (and therefore nondeterministic) the statement
of when the switch must be set. In fact, the demon/constraint combination in our example admits
behavior in which a switch flaps back and forth until the very last moment at which it can be correctly
set. More precisely, the specification defines interval(s) during which the switch can be freely
flapping. provided that at the end of the (last) interval the switch is set correctly for the package. Of
course. an acceptable implemeniation could switch the switch just once (if necessary) to set it
correctly for the next package due. In the implementation we derive for this specification, switches
are set as early as possibie for the simple reason that the beginning of the (first) interval is readily
defined in terms of the available information about packages' positions, while the end of the (last)
interval is not.

The most interesting case for consideration in deriving an implementation arises when
specification nondeterminism and constraints combine to describe deterministic behavior (as in the
case of determining the correct way to set a switch). A range of possibilities present themselves for
mapping away such nondeterminism and constraints.

* The "predictive” solution. At one extreme, we might seek to introduce code into all the
nondeterministic choice points to perform the necessary calculations. These
calculations determine the choices that wili not lead to disaster arbitrarily far into the
future. In our example, this means adjusting SET_SWITCH to set switches at the right
moments and in just the right ways.

MAPPINGS 11

» The "backtracking” solution. At the other extreme. we might derive a backlracking
algonthm. with the choice points as the backtracking points and the constraints mappec
into search-terminating checks at the appropriate places in the program. In our example,
this means arbitcary setting of switches with backtracking when we discover that one of
our constrants is violated. in which case we backtrack and try different settings.
Unfortunateiy. we do not have the ability to move packages backwards through our
networx thus type of solution is therefore rulec out for the package router.

The nature of the domain of the specification strongly intluences the choice of method. The
capabihties ¢of the etfectors® (if there are any in the system being specified). the amount of information
available for making dec:sions. and the desired amount of precomputation ail affect the choice of
algorithm In our example, for mnstance. there is no way to return a package to an incorrectly set
switch in order to backtrack. However, static knowledge about the package router network topology
1S availabie in the specification. so it is possible to precompute the correct setting for each switch and
destination bin. Typicaily. as in Balzer's Eight Queens problem. the interesting issue is to produce an
algorithm to efficiently perform the search, not to make use of the result derived by the search (as in
this exampie). We see a genera!l preference for avoiding backtracking-type implementations if at all
possible. and in our package router development we find a purely “predictive” solution.

Mapping away require SWITCH_IS_EMPTY (switch) within SET_SWITCH demon:

We simply add the predicate of the requirement as a conjunct to the demon’s trigger, to get the
following:

demon SET_SWITCH[swirch]
trigger Random() and SWITCH_IS_EMPTY (switch)
response
begin
update : Switch_Setting of switch tg switch : Switch_Outlet
end:

It is easy to see that this mapping is valid, since the added conjunct rules out precisely those
behaviors in which the SET_SWITCH demon would have triggered and violated the requirement.

To understand how we might map away the DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE
constraint, we paraphrase it in order to simplify the discussion. Thus,

7See Balzer's Eight Queens development 1] for a solution of this nature.

8Fc)r example, switches

e = e . . @, G

ig————-——-—_.__.____‘

12 IMPLEMENTING SPECIFICATION FREEDOMS

always prohibited DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE
exists package, switch ||
(PACKAGE_IN_CORRECT_SWITCH_WRONGLY_SET(package)
and
((SWITCH_IS_EMPTY ((switch) and
package = first(PACKAGES_TO_BE_ROUTED_BY_SWITCH(" .switch)))
asof true)

.

becomes

e

always prohibited DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE

exists package, switch ||
P(package) and (Q(switch, package) asof true);

P corresponds to the presence of a package at a wrongly set switch, and Q to an opportunity to set
the switch correctly for that package. The paraphrasing should be read as "avoid a state in which P
holds and there has been a state (or states) in which Q held.” We could seek to map this into a
"predictive” solution by selecting those behaviors in which, whenever Q is about to hold (or holds, or
will hoid). we do something to ensure that P will not become true then or later. This corresponds to
sefting a switch correctly for a package whenever that package is the first of those due for the switch
and the switch is empty.

Alternatively. we could select o0 implementation which assures that Q never holds. This implies
that no package should ever become the first of those due at a switch when that switch is empty. |t
might be possible to accomplish this by conspiring to prevent there ever being an opportunity to set
the switch correctly, say by always delaying the exit of a package from a switch until it is too late to
switch for the next package. Note, however, that we do not have the power to control the speed at
which packages flow through the network.

The issue concerning the methods by which an implementation preserves the integrity of
constraints is one of the more difficult mapping problems. At the specification ievel!, constraints apply
to the whole specification. As implementors, however, we can control the behavior of only the portion
of the specification we are implementing. We assume that our mission is to implement this portion in
such a way as to ensure that such constraints are not violated independent of the behavior of other
portions of the system, as long as they 100 meet their specifications. This means. for example, that we
cannot expect (nor can we implement) the package moving mechanism to conveniently delay
movement of all packages so as to avoid Q ever holding. Some requirements are imposed on the
environment--for example, the constraint preventing packages from overtaking one another is entirely
the responsibility of the environment.--and we rely on these invariants rather than having to maintain
them. But it is our responsibility to implement our portion to react to any allowable behavior of the

-

MAPPINGS 13 -

other portions of the specification in a way that will never aliow any constraints to be violated.®

Finally, we arrive at the mapped version of the set switch demon. which utiizes "predictive”
behavior to avoid producing a constiaint violation:

demon SET_SWITCH[switch]
trigger SWITCH_IS_EMPTY(swirch) angd
exists package ||
package = first{PACKAGES_TO_BE_ROUTED_BY_SWITCH(" .swifch))
response
update : Switch_Setting of switch
10 (the pipe || (pipe = switch : Switch_Outlet and
BELOW (package : Destination, pipe)));

3.3 DERIVED RELATIONS

One of the underlying features of Gist is that ail knowledge is represented in terms of objects and
relations'° among those objects. Change is therefore represented by the creation or destruction ot
objects and by the insertion or deletion of relations among them.

Often it is convenient to make use of a relationship that is derived from other relationships. Its

derivation is declared once and for all and serves to denote all the maintenance necessary to
preserve the invariant between the derived reiation and the relations upon which it depends.

3.3.1 Example From Package Router

relation PACKAGES_TO_BE_ROUTED_BY_SWITCH(packages | sequence of PACKAGE,
switch)
definition
packages =
(apackage |i
(BELOW(switch,package : At) and

BELOW (package : Destination,switch) and
not PACKAGE_IN_CORRECT_SWITCH_WRONGLY_SET(package))

) ordered writ PACKAGES_EVER_AT_SOURCE(") ;

90' course, such a one-sided division of responsibility may not be possible in a given situation (i.e., the specification is
unimplementable). Avoiding constraint violation may require cooperation among the portions of the system. If so, the
specification must be revised so that such cooperation is raquired from each portion and can therefore be relied upon.

1oAttritu.nesw. such as Switch_Setting, are merely a syntactically convenient and commonly useful form of binary relation.

14 IMPLEMENTING SPECIFICATION FREEDOMS

This relation defines PACKAGES_TO_BE_ROUTED_BY_SWITCH as a derived relation between
switches and sequences of packages. The derivation is a predicate which relates the sequence of
packages to the switch.

For any particular switch, the sequence of packages consists of those for which

* the swilch lies below the package's current location in the network,
* the package’'s destination lies pelow the switch, and

* the package is not in a correct switch that is wrongly set (whict would impiy that the
package is doomed 1o be misrouted).

The ordering puts packages in sequence by the time at which they were iocated at the source.'”

3.3.2 Mapping Away Derived Relations

The specificational power of the derived relation construct comes from being able 1o state a
derivation in a single place and tc make use of the derived information throughout the specification.
Since no corresponding construct is likely to be available in any implementation language we might
choose,w we must map the derivation into explicit data structures and mechanisms to support ait the
uses of that information that are scattered throughout the program. We have a wide range of choices
as to how we might do this mapping.

* At one extreme. we might simply unfold the derivation at all the places where a reference
to the relation is made. Having done this, we may completely discard the reiation and its
derivation. For example, after performing the constraint removal in the previous section,
we could unfold PACKAGES_TO_BE_ROUTED_BY_SWITCH in its sole place of use.
within the trigger of the SET_SWITCH demon. (This relatively simpie step would leave
the bulk of the development effort to the mapping away of the demon construct.) This
approach is analogous to backward inference, where computation is performed on
demand and at the site of the need.

At the other extreme, we might retain the relation but scatter throughout the program the
code necessary to explicitly maintain the invariant between the derived information and
the information upon which it depends ("base" information). Thus it is necessary to find
all possible places where a change is made to any of the base information and to
augment such ptaces with code to recalculate the derived information. This approach is
analogous to forward inference, where computation is performed whenever a
modification to a relevant predicate occurs and at the site of the change.

11Ot:vserwx) that the structure of the network (a tree with the source at the root) and the property that packages cannot
overtake one another combine 10 ensure that packages will arrive at switches in the same order in which they were jocated at
the source.

12Many of the Artificial inteiligence programming fanguages do provide facilities for impiementing derived relations in terms

of inference processes For exam,'s an implementation of derived retations might be provided in CONNIVER [30] in terms of
1F.ADDED or IF-NEEDED methods However. Al programming ianguages in which these facifities are piesent typically do not
provide for the efficient execution one would desire for an optimized implementation. nor do these tacilihes provide precisely
the semantics desired without the inclusion of satisfactory “truth maintenance” capabilities [18. 28]

|
|

MAPPINGS 15 1

As with mapping away historical reference, the nature of the use of derived information atfects our
options and decisions. In our example. we might observe that only the first package of the sequence
of pachages due is ever required. and hence we might seek t0 maintain only that singie piece of
information rather than the entire sequence.

The choices among the implementation alternatives imply alternative trade-offs between storage
and computation in the resuiting program. Completely unfolding the derivation is tending towards
complex recalculation with a minimum of stored data. Maintaining sequences of packages due at
each switch is tending towards simplifying calculations by simple maintenance of additional data.
Maintaining only the first package due at each switch is a compromise between these positions.

Thus, to explicitly maintain the relation PACKAGES_TO_BE_ROUTED_BY_SWITCH. it is
necessary to determine the por.ons of the specification that cause changes to its "base" information:

1. Changes to the attributes At and Destination of packages, which occur when a new
package is created at the source and when movement of a package occurs.

2. Changes to the derived relation PACKAGE_IN_CORRECT_SWITCH_WRONGLY _SET.
which occur on changes to the attributes At and Destination of packages (as before)
and on changes to the Switch_Setting attribute of switches.

3. Changes to the derived relation PACKAGES_EVER_AT_SOURCE. which occur when a
new package is created at the source.

(Note that the derived relatinrn BELOW, a property of the static structure of the routing network. is not
changed by any activity in the specification.)

In performing a recalculation when base information changes, we may be able to take advantage of
the state of knowledge prior to the change to incrementally update the derived information. For
example, when a new package arrives at the source station. it can be appended to the end of each
PACKAGE_TO_BE_ROUTED_BY_SWITCH sequence for those switches on the route from the
source to that package's destination. Simply appending a new element onto the end of a sequence is
easier than recalculating the entire sequence afresh. This is an example of a genera! technique we
call "incremental maintenance,” derived from the work of other researchers in set-theoretic settings.
particularly Paige and Schwartz [33] and Paige and Koenig [32], who call the technique "formal
differentiation,” and Earley [19], who calls it “iterator inversion.” Balzer's Eight Queens development
includes the incremental maintenance of a set. Application of the incremental maintenance
technique to PACKAGES_TO_BE_ROUTED_BY_SWITCH inserts code into the places identified
above. Hence, CREATE_PACKAGE is transformed into the following:

- r - - ‘ ‘; o h?m.';'m“ - et - ,:uu ... AVA—T‘—"—-—-*N:. |I

16 IMPLEMENTING SPECIFICATION FREEDOMS

demon CREATE_PACKAGE[]
trigger Random{)
response
atomi
create package.new || package new : Destination = abin and
package.new : At = the source:
109D switch || BELOW (package new : Destination. switch)
do update packages
of PACKAGES_TO_BE_ROUTED_BY_SWITCH(packages.switch)
1o packages concatenate package.new
end atomic ;

In some places the introduced code can readily be eliminated because. although the base
information is changing, the derived relation can be determined to always remain unchanged. This
situation occurs in RELEASE_PACKAGE_INTO_NETWORK, since moving a package from the
source into the first pipe does not cause the package to become located in a correct switch wrongly
set.

Sometimes it is possible to relax the restriction that the invariant embodied by the relation definition
need hold at all times. When maintaining a derived relation. if the uses of that relation do not
immediately follow the changes to the base information. we may delay the incremental maintenance
provided that it is performed before any information retrieval. Thus. the invariant only need hold at
the times it is “used.” To achieve this effect we may apply either sophisticated special-purpose
transformations that deal with such delayed computation for maintenance or more standard ones that
do "normal” incremental maintenance and then apply code-moving transformations to relocate the
maintenance operations. The ne-d for this may arise if incremental maintenance leads to inserting
code into portions of the specification over which we have no control. This possibility is apparent in
the above example, where we have altered the CREATE_PACKAGE demon, which is in fact part of
the environment.

Hence, we must move the maintenance of PACKAGES_TO_BE_ROUTED_BY_SWITCH out of
this demon. Our solution is to move the maintenance into the beginning of the response of the
RELEASE_PACKAGE_INTO_NETWORK demon, which triggers on the arrival of a package at the
source.

3.4 DEMONS

Demons are Gist's mechanism for providing data-directed invocation of processes. A demon's
trigger is a predicate which triggers the demon’s response whenever a state change induces a
change in the value of the trigger predicate from false to true.

Demons are a convenient specification construct for use in situations in which we wish to trigger an
activity upon some particular state change in the modeled environment. Demons save us from the
need to identify the individual portions of the specification where actions might cause such a change

r

MAPPINGS 17

and the need to insert into such places the additional code necessary to invoke the response
accordingly. The specificational power of the demon construct is enhanced by the power of Gist's
other features. since the triggering predicate may make use of defined relationships. historical
reference, etc.

3.4.1 Example From Package Router

demon RELEASE_PACKAGE_INTO_NETWORK[package.new]

trigger package.new : At = the source

response
begin ... end ;

We saw this portion in Section 3.1.1 as an iflustration of the use of historical reference. The trigger
of this demon is a predicate that will become true whenever a package hecomes located at the
source. When the demon is so triggered, occurrences of the variable packdge.rew in its response
are bound to the instance of the object satisfying that triggering of the demon.

3.4.2 Mapping Away Demons

The demon RELEASE_PACKAGE_INTO_NETWORK is a special case insofar as its triggering
condition is some external event, that is, the relevant state changes are produced only in the
environment portions of the specification. The only mapping option is in how to implement the
low-level details of detecting that event--for example. by using a polling toop or an interrupt-driven
implementation. More interesting from the mapping point of view are the other demons in the portion
of the specification to be implemented. SET_SWITCH and DETECT_MISROUTED_ARRIVAL. where
the implementation must explicitly connect the production of the conditions upon which to trigger
these demons with the invocation of the demons’ response.

Mapping away such a demon involves identifying all places in the program where a state change
might cause a change of the value of the demon's triggering predicate from false to true and inserting
the code to make such a determination and perform the demon’'s response when necessary. This
mapping has much in common with that for maintaining derived relations. Here. however, the
information to be maintained is a truth value; its definition is the trigger predicate of the demon.
Whereas in a derived relation a change would cause a maintenance operation of the information, here
the demon’s response is to be invoked.

Consideration of mapping away the SET_SWITCH demon dramatically illustrates the eftect that the
order in which constructs are eliminated may have on the development. If that demon were mapped
away when its {rigger was still in the form Random(), the result would be to augment every state
change with a nondeterministic choice of whether or not to invoke that demon's response. Further
manipulation of the resulting specification would be severely hampered, particularly in attempting the
removal of constraints by limiting nondeterminism. Obviously it is far better 10 map away the

18 IMPLEMENTING SPECIFICATION FREEDOMS

nondeterminism while it is localized in the demon (as discussed in Section 3.2) and then to map away
the demon.

IS TOTAL INFORMATION

For speciticational purposes it is convenient to make free use of any information about the world
cescribed by the specification. When implementing a specification, however, not all of the
infcrmation ts necessarily available at all imes The implementation specification oescribes what the
portion to be implemented may observe and what it may etfect.

3.5.1 Example From Package Router

implement PACKAGE_ROUTER
gbserving
types
LOCATION. SOURCE, PIPE, SWITCH, BIN, PACKAGE ;

ribut
Source_Outlet. Pipe_Outlet. Switch_Outiet, Switch_Setting ;

predicates
siant (apackage) : At = the source.
start (apackage) : At = switch,
finish (@ package) : At = switch,
start (apackage): At = bin;
exists package || (package : Destination = bin and package : At = the source).

effecting
attributes
switch : Switch_Setting.
package : At asol package : At = the source ;
end implement

At several places within the specification it is assumed that the location and destination of
packages anywhere within the network may be determined (uses of At and Destination).
Examination of the implementation specification reveals that the only available information about
these attributes of packages is the arrival of a package at the source, the movement of a package into
or out of a switch or into a bin, and the destination of a package at the time it is located at the source.

3.5.2 Mapping Away Reliance on Total Information

Mapping away this reliance is similar to mapping away historical reference--either by introducing
and maintaining auxiliary data structures to hoid information that we might need to reference or by
finding ways to derive the required information from other, available information.

MAPPINGS 19

Mapping away references to the Destination attribute of packages might be achieved by reading
each package's destination upon its arrival at the source, explicitly remembering that value in the
implementation, and adjustirg retrievais to the destination attribute into retrievals from the
remembered value (valid because packages’ destinations remain static).

We could achieve the same result in two stages by first mapping in uses of historical reference.
replacing retrievals of the form package : Destination with

(package : Destination) asof package : At = (the source)

and then mapping away these historical references by explicitly remembering the information.

Mapping away references to the At attribute of packages could be pertormed in a similar fashion,
by remembering sequences of packages at locations within the network. Maintenance of these
sequences would invoive making use of sensor triggerings to indicate that packages have moved into
or out of a location and updating the remembered information accordingly. In some cases the lazk of
perfect knowledge may constrain our choice o!f implementation by forcing us to select only those
implementations guaranteed to make no reliance upon information that cannot be derived from the
observable behavior.

As with mapping away other constructs. the context in which unobservable information is used and
the nature of its use may affect our decisions about how to do the mapping. Quite often there are
potential interactions between how we do this and other kinds of mappings: for example. consider the
mapping away of the derived relation PACKAGES_TO_BE_ROUTED_BY_SWITCH (Section 3.3.2).
Since we now see that we might need to maintain sequences of packages at each location in the
specification, we might wish to choose a mapping of the derived relation which finds the first package
due at a switch by looking through the sequences of packages at locations above that switch to find a
correctly routed package. Thus, had we chasen some other mapping of the derived relation. we
might now be motivated to go back and modify that choice accordingly.

.

L

" W"Lﬁfﬂ.‘» T Ve N

4. DEVELOPMENT

in the previous section, we described some of the high-(evel constructs of Gist and discussed the
freedoms these constructs provide in both specification (by easing the task of formally stating
requirements) and implementation (by being neutral towards afternate impfementations}. Our
emphasis has been more on the implementation aspects of these high-level constructs, and we have
enumerated several alternative implementations for each. These mappings are predicated on the
existence and applicability of equivalence-preserving transformations to effect the desired changes to
the specification. In this section. we argue that the mappings described previously can be achieved
by applications of relatively straightforward equivalence-preserving transformations and invocations
of general-purpose mechanisms {such as incremental maintenance). To this end. we present an
annotated development which derives the mapping tor historical reference, described in Section 3.1.

Recall that we wish to eliminate historical references in the following portion of the package router
specification:

.

demon RELEASE_PACKAGE_INTO_NETWORK|[package. new]
trigaer package.new : At = the source
response
beain
if package.new : Destination #
(apackage.orevious |
package.previous immediately < package.new
wit PACKAGES_EVER_AT_SOURCE(")) : Destination
then WAIT[]

update : At of package. new tQ (the source) : Source_Outlet
end:

relation PACKAGES_EVER_AT_SOURCE(packages | seguence of PACKAGE)
definiticn packages = (a package) grdered wrt package : At = (the source)

We desire to produce the following mapped version of the specification:

DEVELOPMENT

demo.: RELEASE PACKAGE_INTO_NETWORK[package new)
triqger pacrage new At = the source
responge
beg:n
if package. rew : Destination *
PREVIOUS_PACKAGE_DESTINATION(®)
then WAIT(}.

ypdate : At of pacrzge rew tg (the scurce) Source_Outlet:

update ppdest in PREVIOUS _PACKAGE_DESTINATION(S)
to pacrage.new : Destination

end;
refation PREVIOUS_PACKAGE_DESTINATION(ppdes: | BIN):

JES—

The process of discovery of the sequence of transformations to etfect this change s one of
interaction between implemertor anc system. The mplementor provides guidance by selecting
transtormations 10 be appiiec and tne system applles them. maintaining the specification. We
strongly expect the process to be an exploratory one. involving exploration of several alternatives.
retracing steps. reordering steps. and reapplying transformations. Hence it 1s important that the
system provide an environmert conducive to such exploration.

In the development that follows we present a sequence of steps that lead directly towards our goal.
We had to perform some exploration ourselves to discover this sequence; however. since our aim is
to demonstrate that such a sequence exists rather than to show the process of discovery. we do not
attempt to show any of the preceeding discovery activities.

in what follows, the result of each development step is displayed. The symbol # at the side of a
portion indicates an introduction or modification.

4.1 THE DEVELOPMENT

The development's first few steps take note of the context of use of the historicaliy defined
sequence PACKAGES_EVER_AT_SOURCE within the RELEASE_PACKAGE_INTO_NETWORK
demon. In this context, package.previous is defined to be the package that precedes package.new in
the sequence. One approach to eliminating the historical reference would involve explicitly
maintaining the PACKAGES_EVER_AT_SOURCE sequence. Then it would be necessary to search
that sequence for package.new and to return package.previous as the immediately preceding
package. However, a more etficient implementation, which avoids maintaining the entire sequence,
can be derived by noting the explicit relationship between package.new and the
PACKAGES_EVER_AT_SOURCE sequence; package.new is precisely the last element. Thus,
package.previous can be defined more directly in terms of this explicit definition of package.new.

-y - - .
P Al eey ;m“ R R -

22 IMPLEMENTING SPECIFICATION FREEDOMS

Our goal in the development is maintenance of package.previous. However. because the definition
of package.previous depends on PACKAGES_EVER_AT_SOURCE, we must first maintain
PACKAGES_EVER_AT_SOURCE.

Step 1

Should we desire to re-express some expression in terms of the sequence we are about to
maintain, we should perform such re-expression prior to the maintenance (since maintenance wili
replace the compact definition of the sequence with a less transparent algorithm for maintaining it)
Thus the first step In this development involves the implementor making the observation that
package.new (in the definition of package.previous in RELEASE_PACKAGE_INTO_NETWORK) s
equivalent to last(PACKAGES_EVER_AT_SOURCE(")). The transformation step is to replace that
occurrence of package.new with its equivalent expression. The equivalence itself may be regarded
as a lemma requiring verification. We expect that the implementor will suggest automated assistance
for proving temmas of this nature. ™

The following shows the resulting specification after this transformation step:

-

demon RELEASE_PACKAGE_INTO_NETWORK[package.new]
trigger package new : At = the source
response
begin
it package.new : Destination #
(agpackage previous ||
» package previous immedhately < last(PACKAGES_EVER_AT_SOURCE("))
wrt PACKAGES_EVER_AT_SOURCE(")) : Destination
then WAIT(]:

update : At of package new g (the source) Source_Outlet
eng:

relation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE)
definition packages = { a package) ordered wrt package : At = (the source):

Step 2

A standard method for maintaining a sequence such as PACKAGES_EVER_AT_SOURCE
requires the introduction of a demon to add new elements when appropriate and a demon to remove
elements when appropriate." In this case, we use a somewhat specialized sequence-maintenance
transformation designed for sequences with the form

(ax) ordered wrt P(x)

13Ahernatively. this modification might have been suggested by a symbolic evaluation ot this portion of the specification.
Thus, the initiative for suggesting the validity of this step might have come from the system rather than from the implementor.
Currently, the transformation application system we use (38] has neither a theorem prover nor a symbolic evaluator for Gist,
both are in the design stage.

“Th' rresponds to the second mapping option from Section 3 3.2. However, rather than “scattering code.” we use a

de’ ach can be thought of as a procedure which has implicit calls scattered about the program

T —“" ""‘.‘.!""‘--"";.m..' - v - ™ .

et e

.

DEVELOPMENT 23

We will drop the intermediate development steps that simplity the result of this transformation
application by eliminating the demon that removes elements when, as here, elements of that type are
never destroyed.

Two remarks need be made concerning this development step:

1 FPACKAGES_EVER_AT_SOURCE is used elsewhere in the specification. then changes
we make to it here should be made to a loca! copy (i.e.. a new reiation with a different
name but an identical definition).

2. The introduced demon. NOTICE_NEW_PACKAGE_AT_SOURCE, must execute before
demon RELEASE_PACKAGE_INTO_NETWORK. which has an iderntical trigger.

demon RELEASE_PACKAGE_INTO_NETWORK|[package.new]
triager package.new : At = the source
responge
begin
if package.new : Destination #
(a package.previous ||
> package.previous immediately < last{tPACK AGES_EVER_AT_SOURCE(*))
wrt PACKAGES_EVER_AT_SOURCE(*)) : Destination
then WAIT[}:

update : At of package.new 19 (the source) : Source_Outlet
end:

» relation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE) :

» demon NOTICE_NEW_PACKAGE_AT_SOURCE[package.new]
» trigger package.new : At = the source
» response update packages in PACKAGES_EVER_AT_SOURCE(packages)

» 10 packages congatenate package.new ;

The effect of the above transformation has been to introduce the
NOTICE_NEW_PACKAGE_AT_SOURCE demon. This demon triggers whenever a package
becomes located at the source, and it responds by updating the packages in
PACKAGES_EVER_AT_SOURCE to be the old value of the packages sequence concatenated with
the new package.

Note that at this stage the historical references we were concerned with have been eradicated;

however, we are still some distance from the form of the program we seek, and the remaining steps
cover that distance.

- .= .: * q&-ﬁm';’m‘; - ",‘IT.." .:u:‘ .

24 IMPLEMENTING SPECIFICATION FREEDOMS

Step 3

In this step, the implementor isolates the portion defining package.previous by extracting the
definition of package.previous from the demon and detining a new unary relation which is true of only
the penultimate element of PACKAGES_EVER_AT_SOURCE("®). This defimtion is accomplished by
application of a standard foid into refation gefinition transtormation. One form of fold transformaticon
takes an object expression and replaces it with a retrieval from a relation defined as that object
expression. Apphcation of this transformation yields the toflowing:

.

demon RELEASE_PACKAGE_INTO_NETWORK |[package new)
trigger package.new : At = the source
response
begin
if package.new : Destination =
> PREVIOUS_PACKAGE("): Destination
then WAIT[)

update : At of package.new to (the source): Source_Outlet
eng:

relation PACKAGES_EVER_AT_SQURCE(packages | sequence of PACKAGE)

» relation PREVIOUS_PACKAGE(prev_package | PACKAGE)

» definitign

» prev_package = {the package.previous ||

» package.previous immediately € Jast{PACKAGES_EVER_AT_SOURCE(*))
> wrt PACKAGES_EVER_AT_SOQURCE("}) :

demon NOTICE_NEW_PACKAGE_AT_SOURCE[package.new)
trigger package.new : At = the source
response update packages in PACKAGES_EVER_AT_SOURCE(packages)
1o packages gongatenate package.new ;

Step 4

To accomplish the next step, maintaining PREVIOUS_PACKAGE itself. we again exercise the
second mapping option from Section 3.3.2.

DEVELOPMENT 25

demon RELEASE_PACKAGE_INTO_NETWORK|[package.new]
trigger package.new : At = the source
response

begin
if package new : Destination 2 PRFVIOUS_PACKAGE(*): Destination

then WAIT[};

update : At of package.new to (the scurce) - Source_Qutlet
end;

relation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE) :

» relation PREVIOUS_PACKAGE(prev_package | PACKAGE) ;

demon NOTICE_NEW_PACKAGE_AT_SOURCE[package.new])
trigger package.new : At = the source
response
atomic
update packages in PACKAGES_EVER_AT_SOURCE(packages)
10 packages gconcatenate package.new .
update prev_package in PREVIOUS_PACKAGE($)
to (the package.previous ||
package.previous immediately <
last(PACKAGES _EVER_AT_SOURCE(") concatenate package new)
wrt PACKAGES_EVER_AT_SOURCE(") concatenate package new)

v v v v v

end atomi

Code for the purpose of maintaining PREVIOUS_PACKAGE has been introduced into the
NOTICE_NEW_PACKAGE_AT_SOURCE demon at the point where a modification is made to the
relation PACKAGES_EVER_AT_SOURCE. upon which PREVIOUS_PACKAGE depends. The
effect of this transformation is to unfoid the definition of PREVIOUS_PACKAGE to the possible
points of change (in this case. only one). Thats. after every possible change to relevant data. code is
introduced to perform an entire recalculation. determining if there was actually a change to
PREVIOUS_PACKAGE.

The code to update the value of PREVIOUS_PACKAGE lies inside a newly created atomig, which
is a Gist construct that allows a "macro” state change. That is, several data base modifications can
be made inside an atomic, within which all changes occur with respect to the state preceding the
atomic and no state transition occurs until the atomic is completed. Thus, since the updated value of
PREVIOUS_PACKAGE wishes to refer to the updated value of PACKAGES_EVER_AT_SOURCE. it
must reproduce the modification to PACKAGES_EVER_AT_SOURCE because the modification is
not reflected inside the atomic. The update of PREVIOUS_PACKAGE is to “"the package
immediately preceding the last package in the sequence consisting of the oid value of
PACKAGES_EVER_AT_SOURCE concatenated with the new package."

26 IMPLEMENTING SPECIFICATION FREEDOMS

Step S

Having achieved the maintenance of PREVIOUS_PACKAGE. we now perform a local
simplification on the code that was inserted to do that maintenance. The transformation

(the obj.previous || obj.previous immediately < obj./ast
wrt (sequence concatenate <obj./ast>))
-
(the obj.previous || obj.previous = last(sequence))

is applied to simplify the expression of the value to which prev_package is updated. This
transformation is cleariy derivable from the properties of concatenate and immediately <. It can be
expressed as a chain of simpler transformations dealing with these constructs. This transformation
can be verified in several ways. If it is not listed in our catalogue of already verified transformations,
we can describe the change ourselves and require either that its correctness be verified or that the
equivalent chain of simpler transformations be discovered. (The latter technique is under
investigation by another member of our group [23)).

The result of the transformation (however verified) is as follows:

demon RELEASE_PACKAGE_INTO_NETWORK [package.new]
trigger package.new : At = the source
response
begin
if package.new : Destination # PREVIOUS_PACKAGE(") : Destination
then WAIT(];

update : At of package.new 10 (the source) : Source_Outlet
end ;

relation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE) ;
relation PREVIOUS_PACKAGE(prev_package | PACKAGE) ;

demon NOTICE_NEW_PACKAGE_AT_SOURCE([package.new]
frigger package.new : At = the scurce
response
atomic
update packages in PACKAGES_EVER_AT_SOURCE(packages
1Q packages goncatenate package.new ;
update prev_package in PREVIOUS_PACKAGE(S)

10 (the package.previous ||
> package.previous =
» last{ PACKAGES_EVER_AT_SOURCE(*))
end atomic :

Y

DEVELOPMENT 27

Step 6

This step applies a trivial local simplification to the code resulting from Step 5. We intend that our
transformation system perform such simplifications automatically. The simplification is

(the x || x = EXPR) --> EXPR

This transformation requires that the type of EXPR be equal to or a subtype of x. and that EXPR be a
deterministic expression. These properties are easily proved. the former because Gist is strongly
typed. the latter because last of a determimstic sequence must be deterministic, and
PACKAGES_EVER_AT_SOURCE(") can be shown to be a deterministic sequence.

The resulting code is as follows:

iy

demon RELEASE_PACKAGE_INTO_NETWORK|[package.new]
trigger package.new : At = the source
response
beagin
if package.new : Destination # PREVIOUS_PACKAGE(*) : Destination
then WAIT[];

update : At of package.new tg (the source) : Source_Outiet
end;

relation PACKAGES_EVER_AT_SOURCE(packages | seguence of PACKAGE)
relation PREVIOUS_PACKAGE(prev_package [PACKAGE) ;

demon NOTICE_NEW_PACKAGE_AT_SOURCE([package.new]
trigger package.new : At = the source
response
atomic
update packages in PACKAGES_EVER_AT_SOURCE(packages)
1o packages concatenate package.new ;
update prev_package in PREVIOUS_PACKAGE($)
> 10 last{ PACKAGES_EVER_AT_SOURCE(*))
end atomig ;

Step 6 concludes the second sequence of steps. At this point we once again take stoc of the
situation and plan a few "cleanup” steps. An observation that motivates the cleanup is :hat the
explicit maintenance of PREVIOUS_PACKAGE invoives the expression

last{ PACKAGES_EVER_AT_SOURCE(*))

Our cleanup will be to fold this expression into a new relation, explicitly maintain that relation, and
simplity--Steps 7 through 9 (akin to the sequence of steps we have just completed).

" e T ‘: - '—‘.M‘;’w. e, V- T e, y’ r

28 IMPLEMENTING SPECIFICATION FREEDOMS

Step 7

As in Step 2, we isolate the interesting portion from the rest of the specification by extracting it and
using it to create the definition of a new reiation: last(tPACKAGES_EVER_AT_SOURCE(")) becomes
the definition of the new relation LAST_PACKAGE.

s

demon RELEASE_PACKAGE_INTO_NETWORK[package.new)
trigger package.new : At = the source
response
beain
if package.new : Destination # PREVIOUS_PACKAGE("*) : Destination
then WAIT[];

update : At of package.new {9 (the source) : Source_Outlet
end

relation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE) ;
relation PREVIOUS_PACKAGE(orev_package | PACKAGE) ;

demon NOTICE_NEW_PACKAGE_AT_SOURCE[package.new)
frigger package.new : At = the source
response
atomic
update packages in PACKAGES_EVER_AT_SOURCE(packages)
10 packages goncatenate package.new ;
update prev_package in PREVIOUS_PACKAGE($)
» to LAST_PACKAGE(")
end gtomic ;

P relation LAST_PACKAGE(/ast_package | PACKAGE)
» definition
» iast_package = last{ PACKAGES_EVER_AT_SOURCE(")):

Step 8

Maintaining LAST_PACKAGE involves mapping a derived relation. We will again exercise the
second mapping option from Section 3.3.2.

T e T el Peragegn B . » T 4

o AT YT T ,’.—.’ i

"'_—_———_—'——-——-——-—-——-w—j

DEVELOPMENT 29

demon RELEASE_PACKAGE_INTO_NETWORK|[package.new]
trigger package.new : At = the source
response
begin
if package.new : Destination # PREVIOUS_PACKAGE("): Destination
then WAIT[};

update : At of package.new g (the source) : Source_QOutlet
end ;

refation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE) ;

relation PREVIOUS_PACKAGE(prev_package | PACKAGE) ;

demon NOTICE_NEW_PACKAGE_AT_SOURCE[package.new]
trigger package.new : At = the source
responge
atomic
update packages in PACKAGES_EVER_AT_SOURCE(packages)
10 packages concatenate package.new ;
update prev_package in PREVIOUS_PACKAGE(S)
10 LAST_PACKAGE(®);
» update last_package in LAST_PACKAGE($)

> to last(PACKAGES_EVER_AT_SOURCE(*) concatenate < package.new >)
end atomic ;

» relation LAST_PACKAGE(/iast_package | PACKAGE) ;

We have invoked precisely the same transformation as in Step 4, where we maintained
PREVIOUS_PACKAGE. Again. the maintenance of LAST_PACKAGE occurs inside the atomic of
NOTICE_NEW_PACKAGE_AT_SOURCE and is thus defined in terms of the old value of
PACKAGES_EVER_AT_SOURCE concatenated with the new package.

Step 9
This step again invokes a trivial local simplification of the form
last(sequence concatenate <element>) --> element A

W T .’.‘?Ij‘: T oy, -~ ',5,.:,,, - e) J

30 IMPLEMENTING SPECIFICATION FREEDOMS

demon RELEASE_PACKAGE_INTO_NETWORK[package.new]
trigger package.new : At = the source
response
begin

it package new : Destination # PREVIOUS_PACKAGE("): Destination

then WAIT(]:

update - At of package.new tQ (the source) : Source_Outiet
end:

relation PACKAGES_EVER_AT_SOURCE(packages | sequence of PACKAGE) ;

relation PREVIOUS_PACKAGE(prev_package | PACKAGE)

demon NOTICE_NEW_PACKAGE_AT_SOURCE[package.new])
trigger package.new : At = the source

atomic

update packages in PACKAGES_EVER_AT_SOURCE(packages)

o packages goncatenate package.new |
upiate prev_package in PREVIOUS_PACKAGE($)
to LAST_PACKAGE("):
wpdate last_package n LAST_PACKAGE(S$)
» {0 package.new
end atomic .

relation LAST_PACKAGE(/ast_package | PACKAGE) ;

Step 9 completes the third small sequence of transformation steps, and we appear to have
achieved as much local simplification as possible. Next we will make a simplification based upon a

more global observation.

Step 10

By observing (and having the system prove) that PACKAGES_EVER_AT_SOURCE is maintained

but never referenced, we can remove the relation entirely, with the following result:

-

DEVELOPMENT 31

demon RELEASE_PACKAGE_INTO_NETWORK [package.new]
triager package.new : At = the source
response
begin
it package.new : Destination # PREVIOUS_PACKAGE(®) : Destination
then WAIT[];

update : At of package.new 1g (the source) : Source_Qutlet
end;

relation PREVIOUS_PACKAGE(prev_package | PACKAGE) ;

demon NOTICE_NEW_PACKAGE_AT_SOURCE|[package.new]
trigger package.new : At = the source

atomic
update prev_package in PREVIOUS_PACKAGE(S$)
10 LAST_PACKAGE(*);
update last_package in LAST_PACKAGE($)
{o package. new
end atomic .

relation LAST_PACKAGE(/ast_package | PACKAGE) ;

4.2 DISCUSSION

4.2.1 Summary of Development Steps

Maintain PACKAGES_EVER_AT_SOURCE (Step 2); but prior to doing so0. re-express
package.previous in terms ot PACKAGES_EVER_AT_SOURCE (Step 1).

Isolate the expression for package.previous (Step 3) and maintain it (Step 4); then perform local
simpiifications (Steps 5 and 6).

Isolate the expression for Iastf{(PACKAGES_EVER_AT_SOURCE(*)) (Step 7). maintain it (Step 8),
and then perform local simplification (Step 8) and global simplification (Step 10).

4.2.2 Remaining Minor Steps

The major objective of this part of the development, namely, the elimination of historical reference
in a respectably efficient manner, has been attained. The implementation is not yet in the precise
form of the stated goal of this development; the steps to achieve this form are similar to those aiready
presented. They involve noticing that

R G s i

32 IMPLEMENTING SPECIFICATION FREEDOMS

1.the NOTICE_NEW_PACKAGE_AT_SOURCE demon has the same trigger as
RELEASE_PACKAGE_INTO_NETWORK. Thus their responses can be combined
(taking care that proper order is preserved).

2. only the Destination attribute of the previous package is desired. thus it is not necessary
to save the identity of the package, only its destiration.

3.because LAST_PACKAGE equals package.new inside the response of the
RELEASE_PACKAGE_INTO_NETWORK demon, we do not need to explictly remember
LAST_PACKAGE (or its destination).

4.2.3 Summary

The objective of this section was to demonstrate that high-level mappings can be accomplished
through judicious application of low-level transformations. The other mappings described in Section

3 are similarly achievable.

RELATED WORK 33

5. RELATED WORK

5.1 TRANSFORMATIONAL METHODOLOGY

The transformational methodology that we foliow is one of several approaches to improving
software development. The research we have described relates most closely to those efforts
involving some form of mapping between constructs on different levels of programming. In this
section, we comment on several such efforts,

Burstall and Darlington. Their early schema-based transformations {12, 16] served to do
optimization tasks of recursion removal, common subexpression elimination, ioop combination. in-
line procedure expansion, and introduction of destructive operations to reuse released storage.
These techniques were built into a system which allowed the user to select the optimization process
to be attempted next. Burstall and Darlington made the observation that manipulations are better
done on higher level programs beftore mappings down to the next level (recursion to iteration,
procedure expansion, etc.) are performed.

Their later work concentrated upon manipulation of recursion equations and achieved efficiency
improvements by aftering the recursion structure (10]. The changes were primarily radical
restructuring of algorithms. achieving efficiency at the expense of modularity and clarity. These ideas
were embodied in an experimental system that relied upon a semiautomatic approach. The system
proposed possible steps to take, and the user selected or rejected avenues for exploration [15).
Another system based on the same ideas was developed to tackle larger scale examples by requiring
{and permitting) the user to provide guidance in a more high-level fashion {20, 22]. Darlington
extended the underlying approach to be able to go from specifications initially containing set and
sequence constructs into recursion equations (13. 14). Darlington's research in these and related
directions continues.

We see many issues crucial to the overall transtormational methodology being pursued in this
research. The most significant difference {from our own efforts) lies in the nature of the specification
language. Their language, HOPE [11] (formerly NPL), is purely applicative in nature; although they
are able to investigate many of the issues of transformational development cf soltware within this
applicative framework, we believe that an applicative specification language is limited in the nature of
the problems to which it is suited. In contrast, our language, Gist, has been constructed explicitly to
express a wide range of tasks.

Manna and Waldinger. Their DEDALUS system [29] comprised a fully automated approach to
deriving algorithms in some target language from specifications in some specification language rich
with constructs from the subject domain of the application. The examples they have dealt with involve
specifications using set theoretic constructs: these specifications become synthesised into recursive
procedures and in turn into iterative procedures (in a LISP-like language). In their investigations the
scale of the problems has been rather small because of their desire to do the synthesis in a fully
automatic fashion. in contrast, the emphasis of our research has been to investigate tools which will
assist a skilled developer to derive implementations from specifications. We hope that as we gain
more experience with this activity we will incrementally introduce more automation into our tools.

ClP. The CIP (Computer-aided Intuition-guided Programming) group at Munich [5, 6] advocates
using machine support to do the bookkeeping tasks in development and documentation, with a
human user providing the intuition to guide this process. Their specification language is built upon a

e

34 IMPLEMENTING SPE. - CATION FREEDOMS

kernel of recursive functions together with transformations to manipulate the kernel. lLanguage
extensions can be defined in terms of the kernel by application of the transformaticns. Thus new
constructs can be defined for both implementation (e.g.. loops. assignments. blocks; and
specification (e.g.. "descriptive expressions” corresponding 1o Gist's (the x || P(x)). abstract data
types. nondeterministic expressions which could denote zero. one or more objects) {7]). In order to
transform progrars making use of these introduced constructs. the defining transtormations are
used to convert the constructs into recursive procedures (where substantial efficiency improvements
may be achieved by applying the kerne! transformations) before mapping them back into the desired
constructs As with the Burstall and Darlington work. there is much overiap betwesn this work and
our own in the approach and the research avenues being explored.

SETL. This work is based on the idea of augmenting specifications with guidance to a
sophisticated compiler to suggest data representations {17. 35]. SETL is based around liberaf use of
tuples. sets. and functions {(and operations upon them). User-provided declarations direct the
compiler 10 select appropriate data structures (from a pre-existing library). The sophisticated
compiler automatically generates the code to implement the operations on these representations.
The group continues to investigate the usefuiness of this approach and the extent to which currently
user-made decisions can be automated [34]). As mentioned in Section 3. we are able to incorporate
into our framework their techniques for dealing with some "data" freedoms. which should save us
from the "reinventing the wheel” syndrome.

Neighbors. He advocates a methodology based on picking some domain of tasks. developing a set
of reusable components for that domain, and then, when faced with a specific problem in that
domain, combining and tailoring those components for that problem [21]. Whde this differs from the
methodology we follow. parailels can be drawn between some of the details of. and observations
drawn from. each approach. Neighbors' "refinements.” which convert "components” ‘objects o
operations) from one domain into another domain closer to implementation. corresgong to cdr
mappings to eliminate Gist constructs. Although the constructs expressed in the components of
Jomains he has so far considered are not as rich as those within Gist, he has been led 1o similar
observations, for example, that optimizations (his "customising™ by transformation) are best done at
the appropriate levels, that retaining the refinement record is helptul to maintenar.ce. anc tnhat the
choice of "refinement” (mapping to us) for one component may influence anc interact with the
refinement of other components.

5.2 SPECIFICATION

We believe that the approach to constructing our specification tanguage. and the resulting
combination of features, is new. However, analogies of individual features can be found in other
languages.

* The relational data base model espoused by Smith and Smith [37].

* Temporal logic, at least in its use to talk and reason about the past. Cist's use of
historical reference is very close to the approach of Sernadas in his tempcral process
specification language, DMTLT [36].

* Automatic demon invocation, seen in the Al languages PLANNER and Qlisp [9].

* Nondeterminism in conjunction with constraints--closest to nondetermirustic automata
theory [27).

. . -:"w Fom e 't.W" - v e - }"

RELATED WORK 35

* Operational semantics and closed system assumptions--as seen in simulation languages
(8]. Zave's executable specification language PAISLEY [40, 41].

5.3 GROUP EFFORTS AT ISI

Beiow is an outline of the efforts that our group at ISI has performed. References to these subjects
occur earlier in this report; we gather them together here to clarify the relation of the mapping
component to the whole.

» Methodology. An outline of our overall approach is given in {3]. A detailed case study of
a single development (the Eight Queens probiem) is presented in [1).

» Specification language. Some requirements of a specification language suitable for
system specification can be found in [2]), and [25] provides a description of Gist. the
language we are developing to satisty those requirements.

» Supponrting system for development. The POPART system. which produces tools to
support our development process, is described in [39], and [38] contains a detaited
discussion of issues relating to making the development process itselt a tormal object A
mechanism for automatically producing ("jittering”) the many mundane steps that occur
in a deveiopment is discussed in [23]. Research towards automating the higer levels of
transformational development is presented in [24).

» Constryction of specifications. Research aimed at supporting the construction of formal
specifications from informal natural language expositions is reported in {4].

i V;E‘:A I R T v ™) .

6. CONCLUSIONS

The primary goal of the research described in this paper has been the investigation of how to map
away uses of Gist's high-level specificational constructs. An example specification provides the
underlying motivation for, and an illustration of. our efforts. However. we have considered the task in
more general terms; in so doing, we have provided a further illustration of the utility of Gist's
constructs tor specification.

The usefulness of our efforts can only be judged within the larger framework of the
Transformational Implementation approach to software development. As a part of this overall
methodology for developing software, our efforts depend on the success of that methodoiogy. «t
remains to be demonstrated that Gist specifications can be readily constructed and manipulated and
that the result of our mappings (a Gist specification with all uses of its high-level constructs mapped
away) can readily be converted into an efficient program in a conventional implementation language.
Our group is involved in continuing research in these areas.

We have described techniques for mapping away each of Gist's high-level constructs. suggested
criteria for selecting one technique over another in terms of the specification and the desired nature
of the implementation, and demonstrated that the mappings are derivable by the application of low-
leve! equivalence-preserving transformations. However, some major tasks remain. Important among
these are the tasks of actually compiling a sizable library of transformations for use in mapping
activities and developing mechanisms to assist an implementor to carry out the mappings. We are
now confident, however. that it will indeed be possible to both describe and collect such
transformations and to make use of them in actual developments.

While pursuing the research described in this paper. we confronted several issues that bear further
investigation.

* The order in which constructs are mapped away seems to be important. We do not
expect there t0 be a "best” order independent of the problem. There seems to be an
opportunistic component of transformational program development.

Althcugh there might be standard mappings to convert uses of one construct into uses of
another. we do not think that a viable approach could be based on converting uses of all
types of constructs into uses of just one type and then concentrating on mapping away
that construct.

The need to map two separate constructs occurring in disparate sections of the
specification may lead to sharing of data structures or procedures. Thus the selections
of mappings cannot be made independently, each might derive an optimal
implementation for its instance. yet together they provide a suboptimal implementation
for both. It is uniikely that we will be able to forsee all the ramifications of mapping
decisions. Hence. we may expect to cycle back through the development process to
adjust some of our earlier choices. This further highlights the need for machine support
during the development process. With such support, expioratory development should be
a relatively painless activity.

Dealing with the distinction between system (the portion of the specification to be
implemented) and environment (the remaining portions of the specification which
establish the framework within which the system will operate) is very difficuit. Often,
mappings distribute code not only through the system portion of the specification, but
aiso through the description of the environment, thus modifying its behavior. This

|
: CONCLUSIONS 37

indicates that the implementation chosen requires cooperation from the environment.
Since such cooperation cannot be assured (because it was not part of the specitication).
either another implementation must be chosen or the specitication must be renegotiated
(as is often necessary when implementation problems arise).

I. GIST SPECIFICATION OF PACKAGE ROUTER

Key to font conventions and special symbols used in Gist

symbol meaning example
| of type . obj fT - objectobjoftypeT
i such that (aninteger || (integer >3)) - an integer greater than 3
_ may be used to build names this_name
concatenates a type name with a integer.1

suffix to form a variable name,
with the semantics that such
variables with distinct suffixes
denote distinct objects.

fonts meaning example
ynderlined key word begin. definition. if
SMALL CAPITALS type name INTEGER
lower case italics variable X
UPPER CASE BOLDFACE action.demon. SET_SWITCH
reiation, and
constraint names
Mixed Case Boldface attribute names Destination

Package Router Specification in Gist

The network
type LOCATION() supertype of

< SOURCE(Source_Outlet | PiPE);

Gist comment - the above line defines SOURCE to be a type with one attribute. Source_Outiet. and only
objects of type PiPE may serve as such attributes. end comment

PIPE(Pipe_Outiet | (SWITCH ynion BIN) tunigue);

SWITCH(Switch_Outlet | PIPE :2, Switch_Setting { PIPE)
where always required
switch : Switch_Setting = switch : Switch_Outlet end:
BIN()
>,

Spec comment - of the above types and attributes, only the SWITCH_SETTING attribute of switch is dynamic
in this specification; the others remain fixed throughout. end comment

Gist comment - by default, attributes (e.g., Source_Outiet) of types (e.g.. SOURCE) are functional (e.g.. there is
one and only one pipe serving as the Source_Outlet attribute of the source). The default may be overridden. as

L

e e e

GIST SPECIFICATION OF PACKAGE ROUTER

occurs in the Switch_Outiet attribute of switcw: there. the ":2" indicates that each swiich has exactly two pipes

serving as its Switch_Outiet attribute end comment

always prohibitad MORE_THAN_ONE_SOURCE
exists source.1 source.2;

Gist comment constraints may be stated as preaicates following either always reguired {in which case the
predicate must always evaluate to true) or always prehibited (in which case the predicale must never evaluate 1o
trues The usual logical cennectives. guantification etc . may be used i Gist predicates Distinct suttixes on
type names after exssts have the special meaning of denoting distinct objects eng comment

always required PIPE_EMERGES_FROM_UNIQUE_SWITCH_OR_SOURCE
for all pipe || (count(a switch_or_source | (SWITCH union SOURCE) ||
(pive = swich_cr_source : Switch_Outlet or
pipe = switch_cr_sovrce : Source_Outlet)) = 1);

Gist comment - the values of attributes can be retrievec in the tollowing manner o obs 15 an object of type 7.
where type 1 has an attridute Att, ther ob) Att genoles any object serving as obj's Att attribute end gomment

relation IMMEDIATELY _BELOW(ib7 | LOCATION. 162 | LOCATION)
definition
ib1 = (case ib2 of
apipe =202 : Pipe_Outlet:
aswitch =>b2: Switch_Qutlet:
the source =7 1b2 : Source_Qutlet
end case).
Gist cemment - the predicate of a gefined relation denotes those tupies of objects participating i that relation
For anv tuple of objects ¢t the appropriate types that tupte (in the above relation. a 2-tuple of LOC£7IONS) 1S IN the
defined relation if and oniy if the defining predicate equals true tor those objects gnd comment

relation BELOW(b7 | LOCATION, b2 | LOCATION)
definition
IMMEDIATELY_BELOW(b1,b2) or
(exists b3 | LOCATION || { BELOW(b1,b3) and BELOW(b3.02)))

always required SOURCE_ON_ROUTE_TO_ALL_BINS
for all bin || BELOW(bin, the source);

Packages--the objects moving through the network

type PACKAGE(At | LOCATION, Destination | BIN) ;

always prohibited MULTIPLE_PACKAGES_AT_SOURCE
exists package. 1, package.2 || (package.? : At = the source and package.2 : At = the source),

39

- e »"‘is: et g coaVRRRC I PR W‘"

—

40 IMPLEMENTING SPECIFICATION FREEDOMS

Our Portion

Spec comment - the portion over which we have control and are 10 impiement end comment

agent PACKAGE_ROUTER(} where

relation PACKAGES_EVER_AT_SOURCE(packages | seguence of PACKAGE)
definition packages = (@ package) prdered wrt package : At = (the source);

The source station

demon RELEASE_PACKAGE_INTO_NETWORK/{package.new]
trigger package.new : At = the source
response
beagin
if package.new : Destination #
(a package.previous ||

package.previous immediately < package.new
wnt PACKAGES_EVER_AT_SOURCE(")) : Destination

then WAIT[]):
Spec comment - the demon mu't delay release of the new package if its destination ditters from thai of the
previous package (the immediately preceding package to have been at the source). end comment

update : At of package.new 1g (the source) : Source_Outlet
end

Qist comment - a demon is a data-tnggered process. Whenever a state change takes place in which the value
of the demon’s lrigger predicate changes from faise to true. the demon is triggered and performs its response.

end comment

action WAIT[];

The switches

relation SWITCH_IS_EMPTY (switch)
definition not exists package || (package : At = switch) ;

demon SET_SWITCH([switch]
trigger Random()
response
i
reguire SWITCH_IS_EMPTY (switch);
update : Switch_Setting of switch to switch : Switch_Outlet
end;
Spec comment the nondeterminism of when and which way to set switches is constrained by the always
prohibited that follows shortly. end comment

GIST SPECIFICATION OF PACKAGE ROUTER 41

relation PACKAGES_TO_BE_ROUTED_BY_SWITCH(packages | sequgnce of PACKAGE, swilch)
definition
packages =
(apackage || { BELOW(switch package . At) and
BELOW (package : Destination switch) and
pot PACKAGE_IN_CORRECT_SWITCH_WRONGLY _SET(package))
) ordered wrt PACKAGES_EVER_AT_SOURCE(*);

Spec comment - packages to be routed by a switch are those packages tor whom the following conditions are
true: (i) the switch lies below them, (ii) the switch lies on their routes to their destinations; and (iii) they are not in
some switch set the wrong way. The sequence is ordered by the order in which the packages were at the source
Note that this excludes packages that are already misrouted; there may be such packages on their way to this
switch, but since they are already misrouted the switch will not have to route them in any particular direction.
end comment

relation PACKAGE_IN_CORRECT_SWITCH_WRONGLY _SET(package)
gefinition
exists switch || (package : At = switch and
BELOW package : Destination switch) and
not BELOW(package : Destination,switch : Switch_Setting)) ;

Spec comment - a package i1s in a correct switch that is wrongly set it the switch lies on the route to that
package's destination but the switch is currently set the wrong way. (This is how a package becomes misrouted.)

eng comment

always prohibited DID_NOT_SET_SWITCH_WHEN_HAD_CHANCE

exists package. switch ||
{ PACKAGE_IN_CORRECT_SWITCH_WRONGLY _SET(package)

and
((SWITCH_IS_EMPTY (switch) and
package = first(PACKAGES_TO_BE_ROUTED_BY_SWITCH(* switch)))asof true)

)

Spec comment - there must never be a state in which a package is in 8 wrongly set switch it there has been an
opportunity to set the switch correctly for that package. i.e., at some time that package was the first of those due

to be routed by the switch and the switch was empty. end comment

Indicating the arrival of a misrouted package in a bin

demon DETECT_MISROUTED_ARRIVAL[package.misrouted, bin.reached, bin.intended)

trigger package.misrouted : At = bin.reached and
package.misrouted : Destination = bin.intended
response DISPLAY_MISROUTING] bin.reached, bin.intended | ;

action DISPLAY_MISROUTING] bin.reached, bin.intended);
end

42 IMPLEMENTING SPECIFICATION FREEDOMS

The Environment

agent ENVIRONMENT() where

Arrival of packages at the source

demon CREATE_PACKAGE([]
trigger Randomy()
responge
create package.new || (package.new : Destination = abin and
package.new : At = the scurce) ;

Spec comment - for the purposes of defining the environment in which the package router is to operate,
packages with some random bin as their destination appear at random intervals at the source (subject to the
prohibition on there being multiple packages at the source). end comment

Movement of packages through the network

relation CONNECTED_TO(/ocation. 1, location.2)
definition
location.2 = (case location.1 of
a pipe =2 location.1: Pipe_Outlel;
a switch => location.1: Switch_Setting
end case);

demon MOVE_PACKAGE[package, location.next]
trigger Random()
response
if CONNECTED_TO(package : At, location.next)
then update : At of package tg location.next;

Spec comment - modelling the unpredictable movement of packages through the network I1s achieved by
having this demon at random move a random package trom one location to the next CONNECTED_TO location
end comment

always prohibited MULTIPLE_PACKAGES_REACH_LOCATION_SIMULTANEOUSLY
exists package. 1, package.2, location
I} ((start package. 1 : At = Jocation) and (start package.2 : At = location));
Gist comment - stant <predicate> is true if the predicate has just changed in value from faise to true. end
comment
Spec comment - the mechanical construction of the router is such that, although packages may bunch up. the
passage of each individual package may be detected. This we modei by constraining the “"granularity” of
movement 1o be that of individual packages. end comment

- m wm% — '?‘,,-"..- _P.. , 7, .

GIST SPECIFICATION OF PACKAGE ROUTER 43

always prohibited PACKAGES_LEAVE_OUT_OF_ORDER
exists package. 1, package.2. common_location | LOCATION
i| ((stat package.1: At = common_location €
stant package.2 : At = common_iocation)and
package.1: At = common_location and
| not package.2 : At = common_location };

Spec comment - it is prohibited that package 1 enter before package.2 yet still be there when package.2 has
left. end comment

Abstraction Specification

Gist comment - the behaviors denoted by the specificatron are an abstraction of the detailed behaviors of the
preceding system. This section states just which of those details are to be included in the abstracted behaviors.
end comment

raction
types
LOCATION, SOURCE, PIPE, SWITCH, BIN, PACKAGE ;

ribut
Source_Outlet. Pipe_Outlet, Switch_Outiet, Switch_Setting,
At. Destination ;

actions
DISPLAY_MISROUTING, WAIT
end abstraction

e e At = 24 T - . e

L - - - -

Implementation Specification

Gist comment - this section states what the portion to be implemented may observe and what it may effect.

end comment

implement PACKAGE_ROUTER

observing
types
LOCATION, SOURCE. PIPE, SWITCH, BIN, PACKAGE ;
attributes
Source_Outlet, Pipe_Outlet, Switch_Outlet. Switch_Setting :
predicates
start { a package) : At = the source,
start (@ package) : At = swilch,

finish (a package) : At = switch,
start (a package) : At = bin;
exists package || (package : Destination = bin and package : At = the source)

Spec comment - the router is limited to observing the routing network. the arrival of packages at the source
angd their movement into and out of switches and into bins, and the destination of a package while it 1s located at
the source. end comment

effecting
attributes
switch : Switch_Setting,

package : At asof package : At = the source ;
Spec comment - the router is limited to etfecting the setting of switches and the release of packages at the

source. end commeny
end implement

IMPLEMENTING SPECIFICATION FREEDOMS

REFERENCES

10.

1.

12.

13.

14,

15.

P

Balzer. R., "Transformational Implementation: An example,”" IEEE Transactions on Software
Engineering SE-7, {1). 1981, 3-14.

Balzer, R., and N. Goldman, "Principles of good software specification and their implications for
specification languages.” in Specification of Reliable Software, pp. 58-67. IEEE Computer
Society, 1978

Balzer. R.. N. Goidman. and D. S. Wile, "On the transformational implementat:on approach to
programming,” in Proceedings of the Second International Conference on Scitware
Engineering, pp. 337-344. San Francisco. October 1976.

Balzer, R.. N. Goldman, and D. S. Wile. "Informality in program specifications.” IEEE
Transactions on Software Engineering SE-4, (2). 1978, 94-103.

Bauer. F. L., "Programming as an evolutionary process." in Proceedings of the Second
international Conference on Software Engineering. pp. 223-234. |[EEE. San Francisco, 1976.

Bauer. F. L.. H. Partsch. P. Pepper. and H. Wassner, "Notes on the Project CIP: Outline of a
Transformation System", institut flir Intormatik. Technische Universitdt Minchen, Technical
Report TUM-INFQ-7729, 1977. :

Bauer, F. L.. M. Broy. R. Gnatz. H. Partsch. P. Pepper. and H. W&ssner, "Towards a wide
spectrum language to support program specification and program development.” SIGPLAN
Notices 13. (12). December 1978, 15-23.

Birtwistle, G. M., O. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA Begin, Auerbach. 1873.

Bobrow, D., and B. Raphael. “New programming languages for artificial intelligence," ACM
Computing Surveys 6, (3), September 1974, 153-174.

Burstall, R. M., and J. Darlington, "A transformation system for developing recursive programs.”
Journal of the ACM 24, (1), January 1977, 44-67.

Burstall, R. M., D. B. MacQueen, and D. T. Sannella, "HOPE: An experimental applicative
language,” in Proceedings of the 1980 LISP Conference, pp. 136-143, Stanford, 1980.

Darlington, J., & Semantic Approach to Automatic Program Improvement, Ph.D. thesis,
University of Edinburgh, Department of Artificial Intelligence, 1972.

Darlington, J., "Applications of program transformation to program synthesis.” in Proceedings of
the International Symposium on Proving and Improving Programs, pp. 133-144, Arc-et-Senans,
France, 1975.

Darlington, J., "A synthesis of several sorting algorithms," Acta Informatica 11, (1), December
1978, 1-30.

Darlington, J., "An experimental program transformation and synthesis system,” Artificial A
Intelligence 16, (1), March 1981, 1-46. 3

- = &"i‘?;;m-.‘w‘, Y-~ "“'{’,;""' w—? | .‘ o ‘

46 IMPLEMENTING SPECIFICATION FREEDOMS
16. Darlington, J., and R. M. Burstall, "A system which automatically improves programs,” Acta
Informatica 6, (1), March 1976, 41-60.

17. Dewar, R.B.K,, A Grand, S. Liu, and J. T. Schwartz, "Programming by refinement, as
exemplified by the SETL representation sublanguage.” ACM Transactions on Programming
Languages and Systems 1, (1). 1979, 27-49.

18. Doyle, J., "A truth maintenance system," Artificial intelligence 12, (3). 1979. 231-272.

19. Earley, J., “"High level iterators and a method for automatically designing data structure
representation,” Computer Languages 1, (4), 1975, 321-342.

20. Feather,M.S., "ZAP" Program Transformation System Primer and Users Manual, Department of
Artificial Intelligence, University of Edinburgh, Technical Report DAl 54, 1978.

21. Feather,M.S. and P. E. London, "Implementing specification freedoms,” Science of Computer
Programming 2, 1982. 91-131.

22. Feather, M. S., "A system for assisting program transformation.” ACM Transactions on
Programming Languages and Systems 4, (1), January 1982, 1.20.

23. Fickas, S. F., "Automatic goal-directed program transformation." in Proceedings of the First
Annual National Conference on Artificial Inteiligence, pp. 68-70. AAAI, Stanford. August 1980.

24, Fickas, S.F., Automating the Transtormational Development of Software. USC/Information
Sciences Institute, RR-83-108 and RR-83-109, 1983. {Published in two volumes.)

25. Goldman, N.,and D. S. Wile, "A relational data base foundation for process specification.” in
P. Chen (ed.), Entity-Relationship Approach to Systems Analysis and Design, North-Holland,
1980.

26. Hommel, G., Vergleich Verschiedener Spezitikationsverfahren am Beispie! Einer
Paketverteilaniage, Kerntorschungszentrum Karlsruhe, Technical Report. August 1880.

27. Hopcroft, J. E., and J. D. Uliman, Formal Languages and their Relation to Automata. Addison-
Wesley, 1969.

28. London, P.E., "A dependency-based modelling mechanism for probiem soiving,"” in AFIPS
Conference Proceedings, Vol. 47: National Computer Conference, pp. 263-274, 1978.

29. Manna, Z., and R. Waldinger, "Synthesis: Dreams => programs," IEEE Transactions on Software
Engineering SE-5, (4), 1979, 294-328.

30. McDermott, D., and G. J. Sussman, The CONNIVER Reference Manual, MIT, Memo 258a, 1974.

31. Neighbors, J. M., Software Construction Using Components, Ph.D. thesis, University of
California, irvine, 1980.

32. Paige, R., and S. Koenig, "Finite differencing of computable expressions,” ACM Transactions on
Programming Languages and Systems 4, (3), July 1982, 402-454.

REFERENCES

33.

3s.

36.

41.

Paige. R., and J. Schwartz, "Expression continuity and the formal differentiation of algorithms.”
in Proceedings of the Fourth ACM Symposium on Principles of Programming Languages.
pp. 58-71. Los Angeles, 1977.

Schonberg. E., J. T. Schwartz, and M. Sharir, "An automatic technique for selection of data
representations in SETL programs,” ACM Transactions on Programming Languages and
Systemns 3, (2), April 1881, 126-143.

Schwartz, J. T.. On Programming, an interim Report on the SETL Project. New York Untversity.
Courant institute of Mathematical Sciences. Technical Report . June 1975.

Sernadas. A., "Temporal aspects of logical procedure definition,” Information Systems 5. (3).
1980, 167-187.

Smith, J., and D. Smith, "Database abstractions: Aggregation and generalization.” ACM
Transactions on Database Systems 2, (2). 1977, 105-133.

Wile, D. S., Program Developments as Formal Objects, USC/Information Sciences Institute,
RR-82-99, 1982.

Wile. D. S.. POPART: Producer of Parsers and Related Tools, System Builders Manual,
USC/information Sciences Institute. 1983. (in press.)

Zave. P., "An operational approach to requirements specification for embedded systems.” IEEE
Transactions on Software Engineering SE-8, (3). May 1982, 250-269.

Zave.P..and R. T. Yeh "Executable requirements for embedded systems.” in Proceedings of
the Fifth International Conference on Software Engineering, pp. 295-304, IEEE Computer Society
Press. San Diego, 1981.

47

